Do you want to publish a course? Click here

In this paper we consider two metric covering/clustering problems - textit{Minimum Cost Covering Problem} (MCC) and $k$-clustering. In the MCC problem, we are given two point sets $X$ (clients) and $Y$ (servers), and a metric on $X cup Y$. We would like to cover the clients by balls centered at the servers. The objective function to minimize is the sum of the $alpha$-th power of the radii of the balls. Here $alpha geq 1$ is a parameter of the problem (but not of a problem instance). MCC is closely related to the $k$-clustering problem. The main difference between $k$-clustering and MCC is that in $k$-clustering one needs to select $k$ balls to cover the clients. For any $eps > 0$, we describe quasi-polynomial time $(1 + eps)$ approximation algorithms for both of the problems. However, in case of $k$-clustering the algorithm uses $(1 + eps)k$ balls. Prior to our work, a $3^{alpha}$ and a ${c}^{alpha}$ approximation were achieved by polynomial-time algorithms for MCC and $k$-clustering, respectively, where $c > 1$ is an absolute constant. These two problems are thus interesting examples of metric covering/clustering problems that admit $(1 + eps)$-approximation (using $(1+eps)k$ balls in case of $k$-clustering), if one is willing to settle for quasi-polynomial time. In contrast, for the variant of MCC where $alpha$ is part of the input, we show under standard assumptions that no polynomial time algorithm can achieve an approximation factor better than $O(log |X|)$ for $alpha geq log |X|$.
Distances to compact sets are widely used in the field of Topological Data Analysis for inferring geometric and topological features from point clouds. In this context, the distance to a probability measure (DTM) has been introduced by Chazal et al. (2011) as a robust alternative to the distance a compact set. In practice, the DTM can be estimated by its empirical counterpart, that is the distance to the empirical measure (DTEM). In this paper we give a tight control of the deviation of the DTEM. Our analysis relies on a local analysis of empirical processes. In particular, we show that the rates of convergence of the DTEM directly depends on the regularity at zero of a particular quantile fonction which contains some local information about the geometry of the support. This quantile function is the relevant quantity to describe precisely how difficult is a geometric inference problem. Several numerical experiments illustrate the convergence of the DTEM and also confirm that our bounds are tight.
Drawing network maps automatically comprises two challenging steps, namely laying out the map and placing non-overlapping labels. In this paper we tackle the problem of labeling an already existing network map considering the application of metro maps. We present a flexible and versatile labeling model. Despite its simplicity, we prove that it is NP-complete to label a single line of the network. For a restricted variant of that model, we then introduce an efficient algorithm that optimally labels a single line with respect to a given weighting function. Based on that algorithm, we present a general and sophisticated workflow for multiple metro lines, which is experimentally evaluated on real-world metro maps.
We consider the problem of finding minimum-link rectilinear paths in rectilinear polygonal domains in the plane. A path or a polygon is rectilinear if all its edges are axis-parallel. Given a set $mathcal{P}$ of $h$ pairwise-disjoint rectilinear polygonal obstacles with a total of $n$ vertices in the plane, a minimum-link rectilinear path between two points is a rectilinear path that avoids all obstacles with the minimum number of edges. In this paper, we present a new algorithm for finding minimum-link rectilinear paths among $mathcal{P}$. After the plane is triangulated, with respect to any source point $s$, our algorithm builds an $O(n)$-size data structure in $O(n+hlog h)$ time, such that given any query point $t$, the number of edges of a minimum-link rectilinear path from $s$ to $t$ can be computed in $O(log n)$ time and the actual path can be output in additional time linear in the number of the edges of the path. The previously best algorithm computes such a data structure in $O(nlog n)$ time.
We investigate straight-line drawings of topological graphs that consist of a planar graph plus one edge, also called almost-planar graphs. We present a characterization of such graphs that admit a straight-line drawing. The characterization enables a linear-time testing algorithm to determine whether an almost-planar graph admits a straight-line drawing, and a linear-time drawing algorithm that constructs such a drawing, if it exists. We also show that some almost-planar graphs require exponential area for a straight-line drawing.
248 - Kevin R. Vixie 2015
In some sense, the world is composed of shapes and words, of continuous things and discrete things. The recognition and study of continuous objects in the form of shapes occupies a significant part of the effort of unraveling many geometric questions. Shapes can be rep- resented with great generality by objects called currents. While the enormous variety and representational power of currents is useful for representing a huge variety of phenomena, it also leads to the problem that knowing something is a respectable current tells you little about how nice or regular it is. In these brief notes I give an intuitive explanation of a result that says that an important class of minimal shape decompositions will be nice if the input shape (current) is nice. These notes are an exposition of the paper by Ibrahim, Krishnamoorthy and Vixie which can be found on the arXiv:1411.0882 and any reference to these notes, should include a reference to that paper as well.
363 - Remi Imbach 2015
The goal of Point Distance Solving Problems is to find 2D or 3D placements of points knowing distances between some pairs of points. The common guideline is to solve them by a numerical iterative method (emph{e.g.} Newton-Raphson method). A sole solution is obtained whereas many exist. However the number of solutions can be exponential and methods should provide solutions close to a sketch drawn by the user.Geometric reasoning can help to simplify the underlying system of equations by changing a few equations and triangularizing it.This triangularization is a geometric construction of solutions, called construction plan. We aim at finding several solutions close to the sketch on a one-dimensional path defined by a global parameter-homotopy using a construction plan. Some numerical instabilities may be encountered due to specific geometric configurations. We address this problem by changing on-the-fly the construction plan.Numerical results show that this hybrid method is efficient and robust.
Given an initial placement of a set of rectangles in the plane, we consider the problem of finding a disjoint placement of the rectangles that minimizes the area of the bounding box and preserves the orthogonal order i.e. maintains the sorted ordering of the rectangle centers along both $x$-axis and $y$-axis with respect to the initial placement. This problem is known as Layout Adjustment for Disjoint Rectangles(LADR). It was known that LADR is $mathbb{NP}$-hard, but only heuristics were known for it. We show that a certain decision version of LADR is $mathbb{APX}$-hard, and give a constant factor approximation for LADR.
We describe a general family of curved-crease folding tessellations consisting of a repeating lens motif formed by two convex curved arcs. The third author invented the first such design in 1992, when he made both a sketch of the crease pattern and a vinyl model (pictured below). Curve fitting suggests that this initial design used circular arcs. We show that in fact the curve can be chosen to be any smooth convex curve without inflection point. We identify the ruling configuration through qualitative properties that a curved folding satisfies, and prove that the folded form exists with no additional creases, through the use of differential geometry.
Sculptors often deviate from geometric accuracy in order to enhance the appearance of their sculpture. These subtle stylizations may emphasize anatomy, draw the viewers focus to characteristic features of the subject, or symbolize textures that might not be accurately reproduced in a particular sculptural medium, while still retaining fidelity to the unique proportions of an individual. In this work we demonstrate an interactive system for enhancing face geometry using a class of stylizations based on visual decomposition into abstract semantic regions, which we call sculptural abstraction. We propose an interactive two-scale optimization framework for stylization based on sculptural abstraction, allowing real-time adjustment of both global and local parameters. We demonstrate this systems effectiveness in enhancing physical 3D prints of scans from various sources.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا