ترغب بنشر مسار تعليمي؟ اضغط هنا

We have mooted a new charged scalar field theory using a doublet of the Galileon scalar field instead of the usual Klein Gordon real scalar fields. Our model for the charged scalar field have a few remarkable properties like Poincare invariance , Abe lian gauge symmetry and shift symmetries. The existence of two independent gauge symmetries is a welcome news for fracton physics.Whereas phase rotation in $phi$ space leads to the conservation of electric charge , the additional symmetries correspond to the conservation of a scalar charge and a vector charge. The system is shown to resemble matter in the fracton phase. Consequently, the results in this letter have immense possibilities in fracton physics.
Previously, we presented a new interpretation of quantum mechanics that revealed it is indeed possible to have a local hidden variable that is consistent with Bells inequality experiments. In that article we suggested that the local hidden variable i s associated with vacuum fluctuations. In this article we expound upon that notion by introducing the Theory of Vacuum Texture (TVT). Here we show that replacing the highly restrictive assumptions of the quantization of energy levels in a system with the simpler, less restrictive postulate that there exists a threshold in order for energy to be released. With this new postulate, the models of blackbody radiation is shown to be consistent with the experiments. We also show, that the threshold condition contributes to a localized vacuum energy which leads us to conclude that the uncertainty principle is a statistical effect. These conditions also naturally leads to the prediction that massive particles transition to an ordered state at low temperatures. In addition, we show that thermodynamic laws must be modified to include two heat baths with temperatures: $T$ for dissipative energy levels and $T_{V}$ ($gg T$) for localized vacuum energy. In total, we show that our threshold postulate agrees with experimental observations of blackbody radiation, the uncertainty principle and quantum statistics without the need of the invoking quantum weirdness.
117 - Robert A. Wilson 2021
There are exactly three finite subgroups of SU(2) that act irreducibly in the spin 1 representation, namely the binary tetrahedral, binary octahedral and binary icosahedral groups. In previous papers I have shown how the binary tetrahedral group give s rise to all the necessary ingredients for a non-relativistic model of quantum mechanics and elementary particles, and how a modification of the binary octahedral group extends this to the ingredients of a relativistic model. Here I investigate the possibility that the binary icosahedral group might be related in a similar way to grand unified theories such as the Georgi--Glashow model, the Pati--Salam model, various $E_8$ models and perhaps even M-theory.
94 - P. Wang 2021
QCD is the fundamental theory to describe the strong interaction, where quarks and gluons have the color degrees of freedom. However, a single quark or gluon can not be separated out and all observable particles are color singlet states. Color confin ement or quark confinement conjecture can be proved by considering not only the strong interaction but also the electroweak interaction which is $SU(3)_c$ invariant. Any measurable state has to be color singlet is the direct consequence of the common symmetry of the standard model. Color non-singlet objects are created from the big bang when the interaction breaks $SU(3)_c$ symmetry based on the nonlocal Lagrangian. There is nearly no interaction between colored objects and color singlet universe when the momentum transfer is not large enough. Colored objects are reasonable candidates of dark matter and the missing of anti-matter in the universe can also be easily explained. Dark matter can be produced in the laboratory which can be tested by measuring the energy loss and baryon number change in the extremely high energy collisions of particles and anti-particles.
In our previous arXiv papers (The Information and the Matter, v1, v5; more systematically the informational conception is presented in the paper The Information as Absolute, 2010) it was rigorously shown that Matter in our Universe - and Universe as a whole - are some informational systems (structures), which exist as uninterruptedly transforming [practically] infinitesimal sub-sets of the absolutely infinite and fundamental set Information. Such a conception allows not only to clear essentially a number of metaphysical and epistemological problems in philosophy but, besides, allows to suggest a reasonable physical model. Since Matter in Universe is an informational system where any interaction between Matters sub-structures, i.e. - particles and systems of the particles - happens always as an exchange by exclusively true information between these structures, the model is based on the conjecture that Matter is some analogue of computer. The conjecture, in turn, allows to introduce in the model the basic logical elements that constitute the material structures and support the informational exchange - i.e. the forces - between the structures. The model is experimentally testable and yet now makes be more clear a number of basic problems in special relativity, quantum mechanics, and, rather probably, in [now - in Newtonian] gravity.
106 - Alejandro Hnilo 2021
A hidden variables model complying with the simplest form of Local Realism was recently introduced, which reproduces Quantum Mechanics predictions for an even ideally perfect Bells experiment. This is possible thanks to the use of a non-Boolean vecto r hidden variable. Yet, that model is as far as Quantum Mechanics from the goal of providing a complete description of physical reality in the EPR-sense. Such complete description includes the capacity to calculate, from the values taken by the hidden variables, the time values when particles are detected. This can be achieved by replacing Borns rule (which allow calculating only probabilities) with a deterministic condition for particle detection. The simplest choice is a threshold condition on the hidden variables. However, in order to test this choice, a new type of quantum (or wave, or non-Boolean) computer is necessary. This new type of quantum computer does not exist yet, not even in theory. In this paper, a classical (Boolean) computer code is presented which mimics the operation of that new type of quantum computer by using contextual instructions. These instructions take into account a consequence of the principle of superposition (which is a typical vector, i.e. non-Boolean, feature). Numerical results generated by the mimicking code are analyzed. They illustrate the features the hypothetical new type of quantum computers output may have, and show how and why some intuitive assumptions about Bells experiment fail.
From the Michelson interference of He-Ne laser beam, it is found that the coherence length of the beam decreases with the decrease of intensity when the laser beam passes through a nonselective absorption filter and the intensity becomes low enough. The effect can be explained by using the discrete wavelet structure model of classic plane light waves.
96 - Mate Csanad 2021
We are used to the fact that most if not all physical theories are based on the set of real numbers (or another associative division algebra). These all have a cardinality larger than that of the natural numbers, i.e. form a continuum. It is often as ked, whether there really is a continuum in the physical world, or whether a future physical theory could work with just countable infinities. The latter could for example be compatible with a quantized space-time. In this paper we formulate a simple model of the brain and show that within the presented natural assumptions, the continuum has to exist for at least some physical quantities.
Informed by a quantum information perspective, we interpret cosmological expansion of space as growing entanglement between underlying degrees of freedom. In particular, we focus on inflationary cosmology, which, while being a successful empirical pa radigm for early universe physics, is riddled with ambiguities when one traces its quantum mechanical origins. We show, by deriving a modified cosmological continuity equation, that by properly accounting for new degrees of freedom being added to space by quantum entanglement, inflation can naturally be driven by quantum mechanics without having to resort to novel, unknown physics. While we explicitly focus on inflation in our discussion, we expect this approach to have possible broad implications for cosmology and quantum gravity.
105 - B.T.T.Wong 2021
This paper is a follow-up work of the previous study of the generalized abelian gauge field theory under rotor model of order $n$ of higher order derivatives. We will study the quantization of this theory using path integral approach and find out the Feynman propagator (2-point correlation function) of this generalized theory. We also investigate the generalized Proca action under rotor model and derive the Feynman propagator for the massive case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا