ترغب بنشر مسار تعليمي؟ اضغط هنا

إن القدرة على توليد أسئلة باللغة الطبيعية مع مستويات التعقيد التي تسيطر عليها مرغوب فيه للغاية لأنها توزع تطبيق تطبيق سؤال. في هذه الورقة، نقترح نموذجا من جيلات السؤال العصبي المرتعل من نهاية إلى نهج، مما يشتمل على مزيج من الخبراء (MOE) كمحدد قوالب ن اعمة لتحسين دقة مراقبة التعقيد ونوعية الأسئلة التي تم إنشاؤها. القوالب الناعمة تلتقط التشابه السؤال مع تجنب البناء باهظ الثمن للقوالب الفعلية. تقدم طريقتنا رواية ومقدر تعقيد عبر المجال لتقييم تعقيد سؤال، مع مراعاة المقطع والسؤال والإجابة وتفاعلاتها. تظهر النتائج التجريبية على مجموعات بيانات QA القياسية على أن نموذج QG الخاص بنا متفوقا على الأساليب الحديثة في كل من التقييم التلقائي واليدوي. علاوة على ذلك، فإن مقدر التعقيد لدينا أكثر دقة بكثير من خطوط الأساس في كلا من إعدادات المجال والخروج.
تصف هذه الورقة النظام الذي طورته STATISTICK DES TESSSES (أخيرا) ل TETISTIVER DES TESSES (LAST) من أجل تعقيد التعقيد المعجمي المهمة المشتركة في Semeval-2021.يتكون النظام المقترح من نموذج LightgBM يتغذى مع ميزات تم الحصول عليها من العديد من قوائم تردد Word، والمعايير المعجمية المنشورة والبيانات السيكلية.لمعالجة خصوصية المهمة المتعددة الكلمة، فإنه يستخدم تدابير جمعية Bigram.على الرغم من أن الميزة السياقية الوحيدة المستخدمة كانت طول الجملة، حقق النظام أداء مشرف في المهمة المتعددة الكلمة، ولكن أكثر فقرا في مهمة كلمة واحدة.تم العثور على تدابير جمعية بيجرام مفيدة، ولكن إلى حد محدود.
في هذه الورقة، نقدم ثلاثة أنظمة مختلفة للإشراف على تنبؤ التعقيد المعجمي باللغة الإنجليزية للتعبيرات الفردية والمتعددة المهام ل Semeval-2021.الرمز المستهدف في السياق.تجمع أفضل نظامنا بين المعلومات من هذه المصادر الثلاث.تشير النتائج إلى أن المعلومات ال واردة من نماذج اللغة الملثمين ويمكن دمج ترميز مستوى الطابع لتحسين تنبؤ التعقيد المعجمي.
في هذه الورقة، نقترح طريقة لاستدادتها معلومات جملة المعلومات ومعلومات تردد الكلمات الخاصة بمهمة التعقيد ذات التعقيد 1-LCP (LCP). في نظامنا، تأتي معلومات الجملة من نموذج روبرتا، وتأتي معلومات تردد الكلمات من خوارزمية TF-IDF. استخدم Black Block كطبقة م شتركة لتعلم العقوبة ومعلومات تردد الكلمات وصفنا تنفيذ أفضل نظامنا وناقش أساليبنا وتجاربنا في المهمة. تنقسم المهمة المشتركة إلى مهمتين فرعيتين. الهدف من المهام الفرعية هو التنبؤ بعقد كلمة محددة سلفا. تنقسم المهمة المشتركة إلى قسمين فرعيين. الهدف من اثنين من المهن الفرعية هو التنبؤ بعقد كلمة محددة سلفا. مؤشر تقييم المهمة هو معامل الارتباط بيرسون. يحتوي أفضل نظام الأداء لدينا على معاملات ارتباط بيرسون من 0.7434 و 0.8000 في مجموعة اختبار المراكز الفرعية ذات الرمز الفرعي واحد ومجموعة اختبار الترجمة الفرعية متعددة رميات، على التوالي.
إن تقييم تعقيد كلمة مستهدفة في سياق حكومي هو الهدف من مهمة تنبؤ التعقيد المعجمية في Semeval-2021.تقدم هذه الورقة النظام الذي تم إنشاؤه لتقييم تعقيد كلمات واحدة معجمية، والجمع بين المتغيرات اللغوية والنفسية في مجموعة من التجارب التي تنطوي على غابة عشو ائية و XGBOOST Regrations.ما وراء ترميز معلومات خارج السياق حول LEMMA، نفذنا ميزات بناء على نماذج اللغة المدربة مسبقا لنموذج تعقيد الكلمة المستهدف في السياق.
تقدم هذه الورقة النتائج والنتائج الرئيسية لمهمة Semeval-2021 1 - تنبؤ التعقيد المعجمي.قدمنا المشاركين مع نسخة معدية من كوربوس المعقدة (Shardlow et al. 2020).تعد Complex وجبة إنجليزية متعددة المجالات التي تم فيها تفاح الكلمات والتعبيرات المتعددة الكلم ة (MWES) فيما يتعلق بعقودها باستخدام مقياس Likert خمس نقاط.Semeval-2021 المهمة 1 الممتازة بمهام فرعية: المهمة الفرعية 1 التي تركز على الكلمات الفرعية والمهمة الفرعية 2 التي تركز على mwes.اجتذبت المنافسة 198 فريقا في المجموع، منها 54 فريقا قدم رسميا يدير في بيانات الاختبار إلى المهمة الفرعية 1 و 37 إلى المهمة الفرعية 2.
تصف هذه الورقة مساهمتنا في مهمة Semeval 2021 1 (Shardlow et al.، 2021): تنبؤ التعقيد المعجمي.في نهجنا، نستفيد النموذج Electra ومحاولة تعكس نظام شرح البيانات.على الرغم من أن المهمة مهمة الانحدار، إلا أننا نوضح أننا نستطيع التعامل معها كجميع العديد من نماذج التصنيف والانحدار.حقق هذا النهج المضاد بشدة إلى حد ما درجة مياه 0.0654 للمهمة الفرعية 1 و MAE من 0.0811 بشأن المهمة الفرعية 2. بالإضافة إلى ذلك، استخدمنا مفهوم إشارات الإشراف الضعيفة من برت لمعان في عملنا، وتحسن بشكل كبيردرجة ماي في المهمة الفرعية 1.
تتمثل النهج المهيمن في التحقيق في الشبكات العصبية للعقارات اللغوية في تدريب Perceptron متعدد الطبقات الضحلة (MLP) على رأس التمثيلات الداخلية للنموذج. يمكن لهذا النهج اكتشاف الخصائص المشفرة في النموذج، ولكن بتكلفة إضافة معلمات جديدة قد تتعلم المهمة مب اشرة. نقترح بدلا من ذلك، حيث نقترح مسبارا شبه جذاب، حيث نجد شبكة فرعية حالية تؤدي المهمة اللغوية المصالحة. بالمقارنة مع MLP، تحقق مسبار الشبكة الفرعية كلتا الدقة العليا على النماذج المدربة مسبقا ودقة منخفضة على النماذج العشوائية، لذلك فهي أفضل في العثور على خصائص ذات أهمية وأسوأ من التعلم بمفردها. بعد ذلك، من خلال اختلاف تعقيد كل مسبار، نوضح أن التحقيق في الشبكة الفرعية التي يسيطر عليها البريتو - يحقق في تحقيق الدقة العليا التي تحقق أي ميزانية تعقيد التحقيق. أخيرا، نقوم بتحليل شبكات فرعية الناتجة الناتجة في مختلف المهام لتحديد مكان ترميز كل مهمة، ونتجد أن المهام ذات المستوى الأدنى يتم التقاطها في طبقات أقل، إعادة إنتاج نتائج مماثلة في العمل الماضي.
وقد لوحظت مفارقة خسارة التعقيد، التي توضح أن الأفراد الذين يعانون من الأمراض من مرض ديناميات سلوكية يمكن التنبؤ بها بشكل مدهش، وقد لوحظ في مجموعة متنوعة من النظم الفسيولوجية البشرية والحيوانية. يعرض ظهور العلاج المستند عبر الإنترنت حديثا فرصة جديدة ل تحليل مفارقة فقدان التعقيد في التشغيل الجديد: فقدان التعقيد اللغوي في محادثات العلاج بالنصوص. في هذه الورقة، نقوم بتحليل التعقيد اللغوي يرتبط بالصحة العقلية في رسائل العلاج عبر الإنترنت المرسلة بين المعالجين و 7170 عملاء قدموا 30،437 ردود للمسح المقابلة على قلقهم. وجدنا أنه عندما أبلغ العملاء المزيد من القلق، أظهروا انخفاض التنوع المعجمي على النحو الذي يقدر بمتوسط ​​نسبة TECE-TECEN المتوسطة. يستخدم المعالجون، من ناحية أخرى، لغة صعوبة في القراءة، التعقيد النحوي، وعمر الاستحواذ عندما كان العملاء أكثر قلقا. أخيرا، وجدنا أن العملاء، وإلى حد كبير، المعالجين، عرضوا مستويات متسقة من العديد من تدابير التعقيد اللغوي. توضح هذه النتائج كيفية الاستفادة من التحليل اللغوي للاتصالات القائمة على النص كعلامة للقلق، وهو احتمال مثير في وقت زيادة الاتصال عبر الإنترنت وزيادة قضايا الصحة العقلية.
الملخص نقدم إطارا نظري لفهم وتوقع تعقيد مهام تصنيف التسلسل، باستخدام تمديد جديد لنظرية حساسية وظيفة المنطقية. حساسية الوظيفة، نظرا للتوزيع على تسلسل الإدخال، يحدد عدد الفك القصير من تسلسل الإدخال الذي يمكن تغيير كل منهما بشكل فردي لتغيير الإخراج. نقو ل أن أساليب تصنيف التسلسل القياسية متحيزة نحو تعلم وظائف الحساسية المنخفضة، بحيث تكون المهام التي تتطلب حساسية عالية أكثر صعوبة. تحقيقا لهذه الغاية، نظهر تحليليا أن المصنفات المعجمية البسيطة يمكن أن تعبر فقط عن وظائف الحساسية المحددة، ونظرا تجريبيا أن وظائف الحساسية المنخفضة هي أسهل للتعلم من أجل LSTMS. ثم نقدر الحساسية في 15 مهام NLP، ويجد أن الحساسية أعلى على المهام الصعبة التي تم جمعها في الغراء أكثر من مهام تصنيف النص البسيطة، وأن الحساسية تتنبأ بأداء كل من المصنفات المعجمية البسيطة والفانيليا BILSTMS دون إشارة إلى تضمينات محاط بأذى. في غضون مهمة، تتوقع الحساسية المدخلات من الصعب على هذه النماذج البسيطة. تشير نتائجنا إلى أن نجاح التمثيلات السياقية المسبقة بشكل كبير ينبع جزئيا لأنهم يقدمون تمثيلات يمكن استخراج المعلومات من خلال فك رموز حساسية منخفضة الحساسية.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا