ترغب بنشر مسار تعليمي؟ اضغط هنا

يقدم هذا البحث نمذجة عددية عامة لنموذج الالكترونات المتعاقبة التي تؤدي إلى انهيار غاز الأرغون. هذا النموذج يقدم تفسير لظاهرة انهيار غاز الارغون في مجال الضغط من 1.368x102 torr الى 2.35x103 torr المشعع بجهاز Nd:galss ليزر توافقي بطول موجة 0.53mm و ن بضة عرضها 15ns. مكنتنا مخرجات برنامج على الحاسب من دراسة تابع التوزيع لطاقة الالكترون (EEDF) ومتحولاته.
هناك فرق حاسم بين تلخيص المستندات الفردية والمتعددة هو كيف يتجلى المحتوى البارز نفسه في المستند (المستندات). على الرغم من أن هذا المحتوى قد يظهر في بداية وثيقة واحدة، إلا أن المعلومات الأساسية تكرر بشكل متكرر في مجموعة من المستندات المتعلقة بموضوع مع ين، مما يؤدي إلى تأثير تأييد يزيد من حية معلومات المعلومات. في هذه الورقة، نقوم بالنماذج تأثير تأييد المستندات عبر المستندات واستخدامها في تلخيص مستندات متعددة. تقوم طريقتنا بإنشاء ملخص من كل مستند، والتي تعمل كموثوقية لتحديد المحتوى البارز من مستندات أخرى. يتم استخدام قطاعات نصية تم تأييدها بشدة لإثراء نموذج فك التشفير العصبي لتعزيزها في ملخص مبيعات. تتمتع هذه الطريقة بإمكانيات كبيرة للتعلم من أمثلة أقل لتحديد المحتوى البارزين، مما يخفف من الحاجة إلى إعادة تدريب مكلفة عند تعديل مجموعة المستندات بشكل حيوي. من خلال تجارب واسعة النطاق حول مجموعات بيانات تلخيص المستندات متعددة الوثائق القياسية، نوضح فعالية أسلوبنا المقترح على خطوط خطوط أساسية منشورة قوية. أخيرا، ألقينا الضوء على اتجاهات البحث في المستقبل ومناقشة تحديات أوسع من هذه المهمة باستخدام دراسة حالة.
تمثل شركة كورسا الكبيرة من الويب موردا ممتازا لتحسين أداء أنظمة الترجمة الآلية العصبية (NMT) عبر العديد من أزواج اللغة. ومع ذلك، نظرا لأن هذه كورسيا صاخبة للغاية، فإن استخدامها محدود إلى حد ما. تركز النهج الحالية للتعامل مع هذه المشكلة أساسا على التر شيح باستخدام الاستدلال أو ميزات واحدة مثل درجات نموذج اللغة أو التشابه الثنائي اللغوي. يقدم هذا العمل نهجا بديلا يتعلم الأوزان لميزات متعددة على مستوى الجملة. يتم استخدام هذه الأوزان الميزة التي تم تحسينها مباشرة لمهمة تحسين أداء الترجمة، وتسجيل الجمل والتصفية في كورسا صاخبة بشكل أكثر فعالية. نحن نقدم نتائج تطبيق هذه التقنية لبناء أنظمة NMT باستخدام Corpus Paracrawl For Estonian-English وإظهار أنه يدق خطوط خطوط ميزة واحدة قوية ومجموعات مصممة باليد. بالإضافة إلى ذلك، نقوم بتحليل حساسية هذه الطريقة لأنواع مختلفة من الضوضاء واستكشاف إذا تعميم الأوزان المستفادة إلى أزواج لغة أخرى باستخدام Corpus Maltese-English Paracrawl Corpus.
في الآونة الأخيرة، أصبح البحث برعاية واحدة من أكثر القنوات المربحة للتسويق. كأساس أساسي للبحث المدعى عليه، اجتذبت النمذجة ذات الصلة الاهتمام المتزايد بسبب القيمة العملية الهائلة. معظم الطرق الحالية تعتمد فقط على أزواج الكلمات الرئيسية للاستعلام. ومع ذلك، عادة ما تكون الكلمات الرئيسية عادة نصوص قصيرة مع معلومات دلالية ندرة، والتي قد لا تعكس بدقة النوايا الإعلانية الأساسية. في هذه الورقة، نقوم بالتحقيق في مشكلة الرواية في النمذجة ذات الصلة بالمعلن، والتي ترفف معلومات المعلنين لسد الفجوة بين نوبة البحث وأغراض الإعلان. يكمن دوافعنا في دمج سلوكيات العطاءات غير المزودة بحيث تكون الرسوم البيانية التكميلية لتعلم تمثيلات معلنة مرغوبة. قد نقترح مزيدا من الرسوم البيانية المزايدة في الرسم البياني المعزز بنموذج BGTR مع ثلاثة أبراج لصمامات الرسوم البيانية العطاءات والبيانات النصية الدلالية. تجريبيا، نقوم بتقييم نموذج BGTR عبر مجموعة بيانات كبيرة، والنتائج التجريبية تظهر باستمرار تفوقها.
كان هناك طلب متزايد لتطوير أنظمة التدريب اللغوية بمساعدة الكمبيوتر (النقص)، والتي يمكن أن توفر ملاحظات حول سوء الأخطاء وتسهيل المتعلمين اللغة الثانية (L2) لتحسين إجادتها الناطقة من خلال الممارسة المتكررة. نظرا لنقص الكلام غير الأصلي لتدريب الوحدة الن مطية للتعرف على الكلام التلقائي (ASR) من نظام النقيب، فإن أداء الكشف عن الأخطاء السخطية المقابلة غالبا ما يتأثر بشكل غالبا بواسطة unffect ASR. وإذ تدرك هذه الأهمية، فإننا في هذه الورقة طرحت طريقة اكتشاف أخطاء أخطاء في مرحلتين. في المرحلة الأولى، تتم معالجة الخطاب الذي ينطقه متعلم L2 من خلال وحدة ASR المناسبة لإنتاج فرضيات تسلسل الهاتف N-Best. في المرحلة الثانية، يتم تغذية هذه الفرضيات في نموذج النطق الذي يسعى إلى التنبؤ بأمانة بفرض رسوم تسلسل الهاتف الذي هو على الأرجح واضحا من قبل المتعلم، وذلك لتحسين أداء اكتشاف أخطاء أخطاء. أجرت التجارب التجريبية مجموعة بيانات قياسية باللغة الإنجليزية تأكيد فائدة طريقتنا.
التحديد التركيز هو مهمة مقترحة حديثا تركز على اختيار الكلمات للتأكيد في جمل قصيرة.الطريقة التقليدية تنظر فقط في معلومات التسلسل من الجملة مع تجاهل هيكل الجملة الغنية ومعلومات علاقة الكلمة.في هذه الورقة، نقترح إطارا جديدا يعتبر هيكل الجملة عبر رسم بيا ني هيكل الجملة وعلاقة كلمة عبر الرسم البياني للكلمة التشابه.يتم اشتقاق الرسم البياني هيكل الجملة من شجرة التحليل من الجملة.يسمح الرسم البياني للكلمة التشابه العقد بمشاركة المعلومات مع جيرانها لأننا نقول أنه في التركيز على التحديد، من المرجح أن يتم التأكيد على كلمات مماثلة معا.يتم استخدام الشبكات العصبية الرسم البياني لتعلم تمثيل كل عقدة لهذين الرسوم البيانية.تظهر النتائج التجريبية أن إطارنا يمكن أن يحقق أداء متفوقا.
تحديد النمذجة هي مهمة توليد تعريف نمط قاموس تلقائيا بالنظر إلى كلمة مستهدفة.في هذه الورقة، نعتبر توليد تعريف عبر اللغات.على وجه التحديد، نولد تعريفات باللغة الإنجليزية لكلمات Wolastoqey (Malecite-Passamaquoddy).WOLASTOQEY هي لغة خلية مهددة بالانقراض والموارد المنخفضة.نحن نفترض أن تمثيل تمثيلات فرعية على أساس ترميز زوج البايت (Sennrich et al.، 2016) يمكن الاستفادة منها لتمثيل كلمات Wolastoqey المعقدة المورفولوجية والتغلب على التحدي المتمثل في عدم وجود كورسا كبيرة متاح للتدريب.توضح نتائجنا التجريبية أن هذا النهج يتفوق على أساليب خط الأساس من حيث النتيجة بلو.
تمكن أنظمة الترجمة العنصرية للمستخدمين من تحديد كيفية ترجمة عبارة محددة في جملة الإخراج. يتم تدريب النظام على إخراج الرموز النصب النائب الخاص ويتم حقن مصطلح المستخدم المحدد في الإخراج من خلال استبدال الخول من السياق لرمز العنصر النائب. ومع ذلك، قد يؤ دي هذا النهج إلى جمل غير رسمية لأنه غالبا ما يكون هذا هو الحال الذي يحتاجه المصطلح المحدد إلى أن يتم تأمينه وفقا لسياق الإخراج وغير معروف قبل الترجمة. لمعالجة هذه المشكلة ونقترح طريقة رواية للترجمة النائبة التي يمكنها إلحاق الشروط المحددة وفقا للبناء النحوي من جملة الإخراج. نقوم بتوسيع هندسة SEQ2SEQ مع وحدة فك ترميز مستوى الطابع الذي يأخذ Lemma من مصطلح محدد من المستخدم والكلمات التي تم إنشاؤها من وحدة فك الترميز على مستوى Word لإخراج شكل صحيحة مؤلف من Lemma. نقيم نهجنا بمهمة الترجمة اليابانية إلى الإنجليزية في مجال الكتابة العلمي وإظهار طرازنا يمكن أن يتضمن شروطا محددة في النموذج الصحيح بنجاح أكثر من نماذج قابلة للمقارنة.
تصف هذه الورقة تقديمنا إلى Thesemeval'21: المهمة 7- Hahackathon: الكشف عن الفكاهة والجريمة.في هذا التحدي، نستكشف معدل تكبير متوسطة، وتعزيز الترجمة، والتعلم المتعدد الكثافة، وتمييز نماذج اللغة المختلفة.من الغريب، لا يحسن الثمينة والخلفية المتوسطة الأد اء، في حين أن التعلم المتعدد والكمال يحسن الأداء.نستكشف لماذا لا توفر الدفعة المتوسطة والخلفية نفس الفائدة مثل مهام معالجة اللغة الطبيعية الأخرى وتوفر نظرة ثاقبة في الأخطاء التي يصنعها طرازنا.أفضل نظام أداء لدينا يحتل المرتبة السابعة على المهمة 1BWith RMSE من 0.5339
النصوص التي تلتقط المعرفة المنطقية حول الأنشطة اليومية والمشاركين.أثبتت معرفة البرنامج النصي مفيدة في عدد من مهام NLP، مثل التنبؤ المراجع، تصنيف الخطاب، وتوليد القصة.إن خطوة حاسمة لاستغلال معرفة البرنامج النصي هي تحليل البرنامج النصي، ومهمة وضع علامة النص مع الأحداث والمشاركين من نشاط معين.هذه المهمة تحديا: إنها تتطلب معلومات حول طرق الأحداث والمشاركين عادة ما يتم نطقها في اللغة السطحية وكذلك الترتيب الذي تحدث فيه في العالم.نظهر كيفية إجراء تحليلات نصية دقيقة مع نموذج التسلسل الهرمي والتعلم التحويل.يعمل نموذجنا على تحسين حالة تقييد الأحداث بأكثر من 16 نقطة F-Score، وللمرة الأولى، يقوم المشاركين بدقة في البرامج النصية.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا