يمكن التفكير في رواية القصص، سواء عبر الخرافات أو التقارير الإخبارية أو الأفلام الوثائقية أو المذكرات، باعتبارها اتصال بالأحداث المثيرة للاهتمام والذين يرتبطون معا عملية ملموسة. من المستحسن استخراج سلاسل الحدث التي تمثل هذه العمليات. ومع ذلك، لا تزال
هذه الاستخراج مشكلة صعبة. نؤخر أن هذا يرجع إلى طبيعة النصوص التي يتم اكتشاف السلاسل منها. ينبط نص اللغة الطبيعية على سرد من الأحداث الخرسانية والبرية مع معلومات أساسية، والسياق، والرأي، والعناصر الأخرى التي تعتبر مهمة لمجموعة متنوعة من الخطاب الضروري وأعمال البراغماتية ولكنها ليست جزءا من سلسلة الأحداث الرئيسية التي يتم إبلاغها. نقدم طرق لاستخراج هذه السلسلة الرئيسية من نص اللغة الطبيعية، عن طريق تصفية الأحداث غير البارزة والجمل الداعمة. نوضح فعالية أساليبنا بمعزل سلاسل الأحداث الهامة من خلال مقارنة تأثيرها على مهام المصب. نظرا لأنه من خلال نماذج لغة كبيرة مسبقا على سلاسلنا المستخرجة لدينا، نحصل على تحسينات في مهمتين تستفيد من فهم واضح لسلاسل الأحداث: التنبؤ السردي والمسألة الزمنية القائمة على الأحداث الرد. تؤكد التحسينات الواجب والدراسات الودي أن طريقة استخراجنا تعزز سلاسل الأحداث الهامة.
الكشف عن الأحداث وتطورها عبر الزمن مهمة حاسمة في فهم اللغة الطبيعية. المناهج العصبية الأخيرة لحدث استخراج العلاقات الزمنية عادة الأحداث عادة إلى التشرد في مساحة Euclidean وتدريب مصنف للكشف عن العلاقات الزمنية بين أزواج الأحداث. ومع ذلك، لا يمكن للمشر
وع في الفضاء الإقليدية التقاط علاقات غير متماثلة أكثر ثراء مثل العلاقات الزمنية الحدث. وبالتالي اقترحنا تضمين الأحداث في المساحات القطعي، والتي هي موجهة نحو جوهرها في نمذجة الهياكل الهرمية. نقدم نهجين لتشفير الأحداث وعلاقاتهم الزمنية في المساحات القطعية. نهج واحد يرفع إلى تضمينات الزائفة لعلاقات الحدث المستخلصة مباشرة من خلال عمليات هندسية بسيطة. في المرتبة الثانية، ابتعدنا عن وضع بنية نهاية إلى نهاية مؤلفة من الوحدات العصبية الزمنية المصممة لمهمة استخراج العلاقة الزمنية. أظهرت تقييمات تجريبية شاملة عن مجموعات البيانات المستخدمة على نطاق واسع فوائد إعادة النظر في المهام على مساحة هندسية مختلفة، مما أدى إلى أداء حديثة في العديد من المقاييس القياسية. أخيرا، أبرزت دراسة الاجتثاث والعديد من التحليلات النوعية دلالات الأحداث الغنية المشفرة ضمنيا في المساحات الزائفة.
إن استخراج وسيطة الحدث الضمني (EAE) هي مهمة حاسمة لاستخراج المعلومات على مستوى المستندات تهدف إلى تحديد حجج الحدث بما يتجاوز مستوى الجملة.على الرغم من الجهود العديدة لهذه المهمة، فإن عدم وجود بيانات تدريبية كافية قد أعاقت الدراسة.في هذه الورقة، نأخذ
منظورا جديدا لمعالجة قضية Sparsity الخاصة بالبيانات التي تواجهها EAE الضمنية، من خلال سد المهمة مع فهم القراءة بالآلة (MRC).على وجه الخصوص، نحن ابتكرت نظاميين تكبير البيانات عبر MRC، بما في ذلك: 1) يتيح نقل المعرفة الضمني، مما يتيح نقل المعرفة من المهام الأخرى، من خلال بناء إطار تدريب موحد في صياغة MRC، و 2) تكبير بيانات صريح، والتي يمكن أن تولد جديدا جديداأمثلة تدريبية، عن طريق علاج نماذج MRC كهندان.لقد بررت التجارب الواسعة فعالية نهجنا - - لا يحصل فقط على أداء حديثة على معيارين، ولكن أيضا يوضح نتائج متفوقة في سيناريو منخفضة البيانات.
يهدف اكتشاف الحدث (ED) إلى تحديد مثيلات الأحداث من الأنواع المحددة في نصوص معينة، والتي تم إضفاء الطابع الرسمي على أنها مهمة تسلسل تسلسل.بقدر ما نعلم، تتخذ نماذج إد القائمة القائم على العصبي القرارات التي تعتمد تماما على الميزات الدلالية السياقية لكل
كلمة في النص المدبأ، والتي نجدها من السهل أن تكون من السهل الخلط بين السياقات المتنوعة في مرحلة الاختبار.تحقيقا لهذه الغاية، وصلنا إلى فكرة إدخال مجموعة من الميزات الإحصائية من ترددات حدوث حدث Word-Event في مجموعة التدريب بأكملها للتعاون مع ميزات السياقية.على وجه التحديد، نقترح شبكة تمييزية دلالية وإحصائية مشتركة (SS-JDN) تتكون من مستخرج ميزة دلالية، واستخراج ميزة إحصائية، وتمييز حدث مشترك.في التجارب، يتجاوز SS-JDN بفعالية عشرة خطوط أساسية قوية حديثة على مجموعة بيانات ACE2005 و KBP2015.علاوة على ذلك، نحن نقوم بإجراء تجارب واسعة لتحقيق SS-JDN بشكل شامل.
استكشف البحث المسبق قدرة النماذج الحسابية للتنبؤ بكلمة ملائمة للكلمة مع مسند معين. في حين تم تخصيص الكثير من العمل لنمذجة العلاقة النموذجية بين الأفعال والحجج بمعزل، في هذه الورقة، نأخذ منظور أوسع من خلال تقييم ما إذا كانت النهج الحسابية أو إلى أي مد
ى يمكن للمناهج الحسابية الوصول إلى المعلومات حول نموذجي الأحداث والمواقف بالكامل الموصوفة اللغة (معرفة الحدث المعمم). بالنظر إلى النجاح الأخير لنماذج لغة المحولات (TLMS)، قررنا اختبارها على معيار لتقدير ديناميكي للملاءمة المواضيعية. تم إجراء تقييم هذه النماذج مقارنة مع SDM، وهو إطار مصمم خصيصا لإدماج الأحداث في الجملة التي تعني التمثيلات، وجرينا تحليل خطأ مفصل للتحقيق في العوامل التي تؤثر على سلوكهم. تظهر نتائجنا أن TLMS يمكن أن تصل إلى العروض المقارنة لأولئك الذين حققتهم SDM. ومع ذلك، يقترح تحليل إضافي باستمرار أن TLMS لا تلتقط جوانب مهمة من المعرفة الحدث، وغالبا ما تعتمد تنبؤاتها على الميزات اللغوية السطحية، مثل الكلمات المتكررة والترحيل والأنماط الأساسية، مما يظهر قدرات التعميم دون المستوى الأمثل.
تظهر الأعمال الحديثة أن هيكل الرسم البياني للجملات، التي تم إنشاؤها من محلل التبعية، لديها إمكانات لتحسين اكتشاف الحدث.ومع ذلك، فإنهم غالبا ما يستفيدون فقط من الحواف (التبعيات) بين الكلمات، وتجاهل ملصقات التبعية (على سبيل المثال، الموضوع الاسمي)، معا
ملة حواف الرسم البياني الأساسي على أنها متجانسة.في هذا العمل، نقترح إطارا جديدا لإدماج كل من التبعيات والملصقات الخاصة بهم باستخدام تقنية اقترح مؤخرا تسمى شبكة محول الرسم البياني (GTN).نحن ندمج GTN للاستفادة من علاقات التبعية على نماذج مستقلة من الرسوم البيانية الحالية وتظهر تحسن في درجة F1 على مجموعة بيانات ACE.
تدرس هذه الورقة مشكلة دقة Aquerence Aquerence Coursence (CDE) التي تسعى إلى تحديد ما إذا كان يذكر الحدث عبر مستندات متعددة تشير إلى نفس الأحداث في العالم الحقيقي.أظهر العمل المسبق فوائد معلومات الوسائد وسياق الوثيقة لحل فور معلومات الحدث.ومع ذلك، لم
يتم التقاط هذه المعلومات بفعالية في العمل السابق ل CDECR.لمعالجة هذه القيود، نقترح نموذجا تعليميا عميقا جديدا ل CDEG الذي يقدم الرصاص الهرمي للشبكات العصبية التنافعية (GCN) إلى إشراف الكيان والحكام المشترك.على هذا النحو، تمكن GCNs مستوى الجملة من ترميز كلمات السياق المهمة لذكر الحدث وحججها بينما يهدف GCN على مستوى المستند إلى تذكر هياكل التفاعل الحدث والحجج لحساب تمثيلات الوثيقة لأداء CDU.يتم إجراء تجارب واسعة لإظهار فعالية النموذج المقترح.
نقدم نظاما للتعلم أنماط التعلم المعممة أو النمطية للأحداث - أو المخططات "--- من قصص اللغة الطبيعية، وتطبيقها على إجراء تنبؤات حول القصص الأخرى.يتم تمثيل مخططاتنا منطق Episodic، وهو شكل منطقي يعكسان عن كثب اللغة الطبيعية.من خلال البدء بمجموعة "مجموعة
من البروتوشما" --- مخططات أن الطفل الذي يبلغ من العمر عامين، من المحتمل أن يعرفه الطفل --- يمكننا الحصول على معرفة عالمية مفيدة وعصرية مع أمثلة قليلة جدا - - في كثير من الأحيانواحد او اثنين.يمكن دمج المخططات المستفادة في مخططات أكثر تعقيدا ومركبة، وتستخدم لإجراء تنبؤات في قصص أخرى حيث تتوفر معلومات جزئية فقط.
ندرس مشكلة تحديد السببية الحدث (ECI) للكشف عن العلاقة السببية بين الحدث تذكر أزواج في النص. على الرغم من أن نماذج التعلم العميق أظهرت مؤخرا الأداء الحديثة من أجل ECI، إلا أنها تقتصر على إعداد الجملة حيث يتم تقديم الحدث أزواج في نفس الجمل. يعالج هذا ا
لعمل هذه المشكلة من خلال تطوير نموذج تعليمي عميق جديد لبيئة المستوى ECI (DECI) لقبول حدث ما بين الجملة. على هذا النحو، نقترح نموذجا أساسيا في الرسم البياني يبني الرسوم البيانية التفاعلية لالتقاط الاتصالات ذات الصلة بين الكائنات المهمة ل DECI في مستندات الإدخال. ثم يتم بعد ذلك استهلاك رسوم الرسوم البيانية للتفاعل من قبل الشبكات التنافسية الرسمية لتعلم التمثيلات المعززة في المستندات للتنبؤ السببية بين الأحداث. يتم تقديم مصادر المعلومات المختلفة لإثراء الرسوم البيانية التفاعلية ل DECI، والتي تتميز بخطاب، بناء الجملة، والمعلومات الدلالية. تظهر تجاربنا الواسعة أن النموذج المقترح يحقق أداء حديثة في مجموعات بيانات قياسية.
الطرق الحالية لتمثيل الأحداث تجاهل الأحداث ذات الصلة في السياق العالمي على مستوى كوربوس.لفهم عميق وشامل للأحداث المعقدة، نقدم مهمة جديدة، وتضمين شبكة الأحداث، والتي تهدف إلى تمثيل الأحداث من خلال التقاط الاتصالات بين الأحداث.نقترح إطارا جديدا، وتضمين
شبكة الحدث العالمي (جين)، الذي يرمز شبكة الحدث مع تشفير رسم بياني متعدد المشتريات مع الحفاظ على طوبولوجيا الرسم البياني وعلم العقدة.يتم تدريب تشفير الرسم البياني عن طريق تقليل كل من الخسائر الهيكلية والدلالية.نحن نطور سلسلة جديدة من المهام التحقيق المهيكلية، وإظهار أن نهجنا يفوق بشكل فعال على نماذج خط الأساس على كتابة العقدة، وتصنيف دور الوسيطة، وقضية كور معلومات الحدث.