أصبح توحيد التعلم الصوتي واللغوي أمرا مهما بشكل متزايد بنقل المعرفة المستفادة بشأن وفرة بيانات لغة الموارد عالية الموارد للحصول على التعرف على الكلام المنخفض الموارد. الأساليب الحالية ببساطة تتالي النماذج الصوتية واللغة المدربة مسبقا لتعلم النقل من ا
لكلام إلى النص. ومع ذلك، فإن كيفية حل تناقض التمثيل في الكلام والنص غير مستكشفة، مما يعيق استخدام المعلومات الصوتية واللغوية. علاوة على ذلك، يعمل الأمر السابق ببساطة استبدال طبقة تضمين نموذج اللغة المدربة مسبقا مع الميزات الصوتية، والتي قد تتسبب في مشكلة نسيان الكارثي. في هذا العمل، نقدم WAV-Bert، وهي طريقة تعليمية تعاونية وصوتية وممثلة على الصمامات والاستفادة من المعلومات السياقية من الكلام والنص. على وجه التحديد، نقوم بتحديد نموذج صوت صوتي مدرب مسبقا (WAV2VEC 2.0) ونموذج لغة (Bert) في إطار قابل للتدريب من طرف إلى نهاية. تم تصميم وحدة تجميع التمثيل لتجميع التمثيل الصوتي واللغوي، ويتم تقديم وحدة الانتباه التضمين لإدماج المعلومات الصوتية في بيرت، والتي يمكن أن تسهل بفعالية تعاون نماذج مدربة مسبقا وبالتالي تعزيز تعلم التمثيل. تشير التجارب الواسعة إلى أن لدينا WAV-Bert تنفأ بشكل كبير على النهج الحالية وتحقيق الأداء الحديث في التعرف على الكلام المنخفض الموارد.
تعد استعادة الترقيم متطلبات أساسية لقراءة النص المستمدة من أنظمة التعرف على الكلام التلقائي (ASR). تقتصر معظم الحلول المعاصرة على التنبؤ ببعض العلامات التي تحدث بشكل متكرر، مثل الفترات والفواصل وعلامات الاستفهام - وفقط واحد لكل كلمة. ومع ذلك، في لغة
مكتوبة، نتعامل مع عدد أكبر بكثير من أحرف علامات الترقيم (مثل الأقواس الواصلية، وما إلى ذلك)، ومجموعاتها (مثل الأقواس متبوعة ب DOT). لا يمكن دائما تقليل علامات الترقيم هذه بشكل لا لبس فيه إلى مجموعة أساسية من العلامات الأكثر تدويرا. في هذا العمل، نقيم عدة طرق في مهمة إعادة إعمار علامات الترقيم الشاملة. نحن نقوم بإجراء تجارب على الفورما المتوازي لغغتين مختلفتين، والإنجليزية والبولندية - اللغات مع التشكل البسيط والمعقد نسبيا، على التوالي. نحن نحقق أيضا في تأثير بناء نموذج على علامات ترقيم شاملة حول جودة مهام ترقيم الترقيم الأساسية
تهدف أنظمة تعرف الكلام أليا بشكل عام إلى كتابة ما يقال. تتالف أنظمة تعرف الكلام المستمر آليا في أحدث ما توصل إليه العلم في هذا المجال من أربع مكونات أساسية: معالجة الإشارة، النمذجة الصوتية, النمذجة اللغوية، ومحرك البحث. أما تعرف الكلمات المنفصلة فلا
يحتوي على النمذجة اللغوية. التي تقوم بربط الكلمات لتشكيل جملة مفهومة.
تعد أنظمة التعرف السمعية البصرية التي تعتمد على صوت و حركة شفاه المتكلم من أهم
أنظمة التعرف على الكلام. و قد تم تطوير العديد من التقنيات المختلفة من حيث الطرائق
المستخدمة في استخراج السمات و طرائق التصنيف.
يقترح البحث إنشاء نظام للتعرف على الكلمات
المعزولة بالاعتماد السمات السمعية
المستخرجة من فيديوهات منطوقة لكلمات باللغة العربية في بيئة خالية من الضجيج، و من ثم
إضافة مكون الطاقة و المشتقات التفاضلية في مرحلة استخراج السمات لخوارزمية معاملات تردد الميل.
تعد تقنيات التعرف على الكلام من أهم التقنيات الحديثة التي دخلت بقوة في مجالات الحياة المختلفة سواء الطبية أو الأمنية أو الصناعية. و بناءً عليه تم تطوير العديد من الأنظمة المعتمدة على طرق مختلفة في استخلاص السمات و التصنيف.
في هذا البحث تم إنشاء ثلاث
ة أنظمة للتعرف على الكلام، تختلف عن بعضها البعض بالطرق المستخدمة في مرحلة استخلاص السمات، حيث استخدم النظام الأول خوارزمية MFCC بينما استخدم النظام الثاني خوارزمية LPCC أما النظام الثالث فاستخدم خوارزمية PLP. تشترك هذه الأنظمة بطريقة التصنيف حيث استخدمت خوارزمية الـHMM كمصنف.
في البداية تم دراسة و تقييم أداء عملية التعرف على الكلام للأنظمة الثلاثة السابقة المقترحة منفردةً. بعد ذلك تم تطبيق خوارزمية الجمع على كل زوج من الأنظمة المدروسة و ذلك لدراسة أثر خوارزمية الجمع في تحسين التعرف على الكلام.
تم اعتماد نوعين من الأخطاء، الأخطاء التزامنية (simultaneous errors) و الأخطاء الاعتمادية ((dependent errors، كوحدة مقارنة لدراسة فعالية خوارزمية الجمع في تحسين أداء عملية التعرف على الكلام. يتبين من نتائج المقارنة أن أفضل نسبة تعرف على الكلام تم الحصول عليها في حالة جمع الخوارزميتان MFCC و PLP حيث تم الحصول على معدل تعرف 93.4%.
الغاية من هذا البحث بناء نظام لتصنيف نطق الأرقام الانكليزية وذلك بالاعتماد على نماذج ماركوف المخفية في التصنيف وذلك بالاعتماد على طيف الإشارة في استخراج سمات الإشارات
يشتمل التعرف على الصوت قسمين أساسيين و هما التعرف على الكلام و التعرف على المتكلم، حيث تعد عمليات التعرف هذه من أهم التقنيات الحديثة و قد تم تطوير العديد من الأنظمة التي تختلف بالطرق المستخدمة في استخراج السمات و طرق التصنيف لتدعم أنظمة تعرف من هذا ا
لنوع.
اشتملت الدراسة في هذا البحث على القسمين السابقين، حيث تم تصميم نظام تعرف على المتكلم و أوامره الصوتية و استخدام عدة خوارزميات متكاملة لإنجاز البحث. قمنا بإجراء دراسة تحليلية لخوارزمية Mel Frequency Cepstral Coefficients ((MFCC المستخدمة في استخراج السمات، و تمت دراسة بارامترين خاصين بهذه الخوارزمية هما عدد المرشحات في بنك المرشحات و عدد السمات المأخوذة من كل إطار و علاقة هذين البارامترين ببعضهما و مدى تأثير قيمتهما على نسب التعرف. و تم استخدام الشبكات العصبية ذات التغذية الأمامية و الانتشار الخلفي للخطأ Forwarding back propagation Neural Networks (FFBPNN)Feed كمصنف و حللنا أداء الشبكة للوصول إلى أفضل خصائص و مكونات محققة عملية التعرف. كما تمت دراسة خوارزمية Endpoint المستخدمة لإزالة فترات الصمت و تأثيرها في نسب التعرف على الصوت.