ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppose you and your friend both do $n$ tosses of an unfair coin with probability of heads equal to $alpha$. What is the behavior of the probability that you obtain at least $d$ more heads than your friend if you make $r$ additional tosses? We obtain asymptotic and monotonicity/convexity properties for this competing probability as a function of $n$, and demonstrate surprising phase transition phenomenons as parameters $ d, r$ and $alpha$ vary. Our main tools are integral representations based on Fourier analysis.
We give a quantitative analysis of clustering in a stochastic model of one-dimensional gas. At time zero, the gas consists of $n$ identical particles that are randomly distributed on the real line and have zero initial speeds. Particles begin to move under the forces of mutual attraction. When particles collide, they stick together forming a new particle, called cluster, whose mass and speed are defined by the laws of conservation. We are interested in the asymptotic behavior of $K_n(t)$ as $nto infty$, where $K_n(t)$ denotes the number of clusters at time $t$ in the system with $n$ initial particles. Our main result is a functional limit theorem for $K_n(t)$. Its proof is based on the discovered localization property of the aggregation process, which states that the behavior of each particle is essentially defined by the motion of neighbor particles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا