ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore the degeneracy and discreteness problems in the standard cosmological model (Lambda CDM). We use the Observational Hubble Data (OHD) and the type Ia supernova (SNe Ia) data to study this issue. In order to describe the discreteness in fitt ing of data, we define a factor G to test the influence from each single data point and analyze the goodness of G. Our results indicate that a higher absolute value of G shows a better capability of distinguishing models, which means the parameters are restricted into smaller confidence intervals with a larger figure of merit evaluation. Consequently, we claim that the factor G is an effective way in model differentiation when using different models to fit the observational data.
26 - Siqi Liu , Tong-Jie Zhang 2013
Cosmological observables could be used to construct cosmological models, however, a fixed number of observables limited on the light cone is not enough to uniquely determine a certain model. A reconstructed spherically symmetric, inhomogeneous model that share the same angular-diameter-distance-redshift relationship $d_A(z)$ and Hubble parameter $H(z)$ besides $Lambdatextrm{CDM}$ model (which we call LTB-$Lambdatextrm{CDM}$ model in this paper), may provide another solution. Cosmic age, which is off the light cone, could be employed to distinguish these two models. We derive the formulae for age calculation with origin conditions. From the data given by 9-year WMAP measurement, we compute the likelihood of the parameters in these two models respectively by using the Distance Prior method and do likelihood analysis by generating Monte Carlo Markov Chain for the purpose of breaking the degeneracy of $Omega_m$ and $H_0$ (the parameters that we use for calculation). The results yield to be: $t_{Lambdatextrm{CDM}} =13.76 pm 0.09 ~rm Gyr$, $t_{rm {LTB}-Lambdatextrm{CDM}} =11.38 pm 0.15 ~rm Gyr$, both in $1sigma$ agreement with the constraint of cosmic age given by metal-deficient stars. The cosmic age method that is set in this paper enables us to distinguish between the inhomogeneous model and $Lambdatextrm{CDM}$ model.
We propose a valid scheme to measure the Hubble parameter $H(z)$ at high redshifts by detecting the Sandage-Loeb signal (SL signal) which can be realized by the next generation extremely large telescope. It will largely extend the current observation al Hubble parameter data (OHD) towards the redshift region of $z in [2.0,5.0]$, the so-called redshift desert, where other dark energy probes are hard to provide useful information of the cosmic expansion. Quantifying the ability of this future measurement by simulating observational data for a CODEX (COsmic Dynamics and EXo-earth experiment)-like survey and constraining various cosmological models, we find that the SL signal scheme brings the redshift upper-limit of OHD from $z_mathrm{max}=2.3$ to $z_mathrm{max}simeq 5.0$, provides more accurate constraints on different dark energy models, and greatly changes the degeneracy direction of the parameters. For the $Lambda$CDM case, the accuracy of $Omega_m$ is improved by $58%$ and the degeneracy between $Omega_m$ and $Omega_ {Lambda}$ is rotated to the vertical direction of $Omega_k = 0$ line strongly; for the $w$CDM case, the accuracy of $w$ is improved by $15%$. The Fisher matrix forecast on different time-dependent $w(z)$ is also performed.
We develop a purely mathematical tool to recover some of the information lost in the non-linear collapse of large-scale structure. From a set of 141 simulations of dark matter density fields, we construct a non-linear Weiner filter in order to separa te Gaussian and non-Gaussian structure in wavelet space. We find that the non-Gaussian power is dominant at smaller scales, as expected from the theory of structure formation, while the Gaussian counterpart is damped by an order of magnitude on small scales. We find that it is possible to increase the Fisher information by a factor of three before reaching the translinear plateau, an effect comparable to other techniques like the linear reconstruction of the density field.
The thermodynamical properties of dark energy are usually investigated with the equation of state $omega =omega_{0}+omega_{1}z$. Recent observations show that our universe is accelerating, and the apparent horizon and the event horizon vary with reds hift $z$. When definitions of the temperature and entropy of a black hole are used to the two horizons of the universe, we examine the thermodynamical properties of the universe which is enveloped by the apparent horizon and the event horizon respectively. We show that the first and the second laws of thermodynamics inside the apparent horizon in any redshift are satisfied, while they are broken down inside the event horizon in some redshift. Therefore, the apparent horizon for the universe may be the boundary of thermodynamical equilibrium for the universe like the event horizon for a black hole.
In this work, we use observations of the Hubble parameter from the differential ages of passively evolving galaxies and the recent detection of the Baryon Acoustic Oscillations (BAO) at $z_1=0.35$ to constrain the Dvali-Gabadadze-Porrati (DGP) univer se. For the case with a curvature term, we set a prior $h=0.73pm0.03$ and the best-fit values suggest a spatially closed Universe. For a flat Universe, we set $h$ free and we get consistent results with other recent analyses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا