ترغب بنشر مسار تعليمي؟ اضغط هنا

Video conferences play a vital role in our daily lives. However, many nonverbal cues are missing, including gaze and spatial information. We introduce LookAtChat, a web-based video conferencing system, which empowers remote users to identify gaze awa reness and spatial relationships in small-group conversations. Leveraging real-time eye-tracking technology available with ordinary webcams, LookAtChat tracks each users gaze direction, identifies who is looking at whom, and provides corresponding spatial cues. Informed by formative interviews with 5 participants who regularly use videoconferencing software, we explored the design space of gaze visualization in both 2D and 3D layouts. We further conducted an exploratory user study (N=20) to evaluate LookAtChat in three conditions: baseline layout, 2D directional layout, and 3D perspective layout. Our findings demonstrate how LookAtChat engages participants in small-group conversations, how gaze and spatial information improve conversation quality, and the potential benefits and challenges to incorporating gaze awareness visualization into existing videoconferencing systems.
We propose a novel approach for constraint-based graphical user interface (GUI) layout based on OR-constraints (ORC) in standard soft/hard linear constraint systems. ORC layout unifies grid layout and flow layout, supporting both their features as we ll as cases where grid and flow layouts individually fail. We describe ORC design patterns that enable designers to safely create flexible layouts that work across different screen sizes and orientations. We also present the ORC Editor, a GUI editor that enables designers to apply ORC in a safe and effective manner, mixing grid, flow and new ORC layout features as appropriate. We demonstrate that our prototype can adapt layouts to screens with different aspect ratios with only a single layout specification, easing the burden of GUI maintenance. Finally, we show that ORC specifications can be modified interactively and solved efficiently at runtime.
We introduce LUCSS, a language-based system for interactive col- orization of scene sketches, based on their semantic understanding. LUCSS is built upon deep neural networks trained via a large-scale repository of scene sketches and cartoon-style col or images with text descriptions. It con- sists of three sequential modules. First, given a scene sketch, the segmenta- tion module automatically partitions an input sketch into individual object instances. Next, the captioning module generates the text description with spatial relationships based on the instance-level segmentation results. Fi- nally, the interactive colorization module allows users to edit the caption and produce colored images based on the altered caption. Our experiments show the effectiveness of our approach and the desirability of its compo- nents to alternative choices.
We contribute the first large-scale dataset of scene sketches, SketchyScene, with the goal of advancing research on sketch understanding at both the object and scene level. The dataset is created through a novel and carefully designed crowdsourcing p ipeline, enabling users to efficiently generate large quantities of realistic and diverse scene sketches. SketchyScene contains more than 29,000 scene-level sketches, 7,000+ pairs of scene templates and photos, and 11,000+ object sketches. All objects in the scene sketches have ground-truth semantic and instance masks. The dataset is also highly scalable and extensible, easily allowing augmenting and/or changing scene composition. We demonstrate the potential impact of SketchyScene by training new computational models for semantic segmentation of scene sketches and showing how the new dataset enables several applications including image retrieval, sketch colorization, editing, and captioning, etc. The dataset and code can be found at https://github.com/SketchyScene/SketchyScene.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا