ترغب بنشر مسار تعليمي؟ اضغط هنا

The van der Waals (vdW) density functional (vdW-DF) method [ROPP 78, 066501 (2015)] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. Th is is done in a nonlocal-correlation energy term $E_c^{nl}$, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in the fully interacting materials system, it is necessary to compensate for associated kinetic-correlation energy effects. Here we present a coupling-constant scaling analysis that also permits us to compute the kinetic-correlation energy $T_c^{nl}$ that is specific to the vdW-DF account of nonlocal correlations. We thus provide a spatially-resolved analysis of the total nonlocal-correlation binding, including vdW forces, in both covalently and non-covalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. We also find that the signatures that we reveal in our full-interaction mapping are typically given by the spatial variation in the $E_c^{nl}$ binding contributions, at least in a qualitative discussion. Furthermore, our full mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.
The nonlocal correlation energy in the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92, 246401 (2004); Phys. Rev. B 76, 125112 (2007); Phys. Rev. B 89, 035412 (2014)] can be interpreted in terms of a coupling of zero-point energ ies of characteristic modes of semilocal exchange-correlation (xc) holes. These xc holes reflect the internal functional in the framework of the vdW-DF method [Phys. Rev. B 82, 081101(2010)]. We explore the internal xc hole components, showing that they share properties with those of the generalized-gradient approximation. We use these results to illustrate the nonlocality in the vdW-DF description and analyze the vdW-DF formulation of nonlocal correlation.
The dispersion interaction between a pair of parallel DNA double-helix structures is investigated by means of the van der Waals density functional (vdW-DF) method. Each double-helix structure consists of an infinite repetition of one B-DNA coil with 10 base pairs. This parameter-free density functional theory (DFT) study illustrates the initial step in a proposed vdW-DF computational strategy for large biomolecular problems. The strategy is to first perform a survey of interaction geometries, based on the evaluation of the van der Waals (vdW) attraction, and then limit the evaluation of the remaining DFT parts (specifically the expensive study of the kinetic-energy repulsion) to the thus identified interesting geometries. Possibilities for accelerating this second step is detailed in a separate study. For the B-DNA dimer, the variation in van der Waals attraction is explored at relatively short distances (although beyond the region of density overlap) for a 360 degrees rotation. This study highlights the role of the structural motifs, like the grooves, in enhancing or reducing the vdW interaction strength. We find that to a first approximation, it is possible to compare the DNA double strand at large wall-to-wall separations to the cylindrical shape of a carbon nanotube (which is almost isotropic under rotation). We compare our first-principles results with the atom-based dispersive interaction predicted by DFT-D2 [J. Comp. Chem. 27, 1787 (2006)] and find agreement in the asymptotic region. However, we also find that the differences in the enhancement that occur at shorter distances reveal characteristic features that result from the fact that the vdW-DF method is an electron-based (as opposed to atom-based) description.
We present density functional theory (DFT) calculations for 6H-SiC${0001}$ surfaces with different surface stackings and terminations. We compare the relative stability of different $(0001)$ and $(000bar1)$ surfaces in terms of their surface free ene rgies. Removing surface and subsurface Si atoms, we simulate the formation of graphene and graphene-like overlayers by Si evaporation. We find that overlayers with a different nature of bonding are preferred at the two non-equivalent surface orientations. At $(0001)$, a chemically bonded, highly strained and buckled film is predicted. At $(000bar1)$, a van der Waals (vdW) bonded overlayer is preferred. We quantify the vdW binding and show that it can have a doping effect on electron behavior in the overlayer.
The dispersive interaction between nanotubes is investigated through ab initio theory calculations and in an analytical approximation. A van der Waals density functional (vdW-DF) [Phys. Rev. Lett. 92, 246401 (2004)] is used to determine and compare t he binding of a pair of nanotubes as well as in a nanotube crystal. To analyze the interaction and determine the importance of morphology, we furthermore compare results of our ab initio calculations with a simple analytical result that we obtain for a pair of well-separated nanotubes. In contrast to traditional density functional theory calculations, the vdW-DF study predicts an intertube vdW bonding with a strength that is consistent with recent observations for the interlayer binding in graphitics. It also produce a nanotube wall-to-wall separation which is in very good agreement with experiments. Moreover, we find that the vdW-DF result for the nanotube-crystal binding energy can be approximated by a sum of nanotube-pair interactions when these are calculated in vdW-DF. This observation suggests a framework for an efficient implementation of quantum-physical modeling of the CNT bundling in more general nanotube bundles, including nanotube yarn and rope structures.
We determine the size effect on the lattice thermal conductivity of nanoscale wire and multilayer structures formed in and by some typical semiconductor materials, using the Boltzmann transport equation and focusing on the Knudsen flow effect. For bo th types of nanostructured systems we find that the phonon transport is reduced significantly below the bulk value by boundary scattering off interface defects and/or interface modes. The Knudsen flow effects are important for almost all types of semiconductor nanostructures but we find them most pronounced in Si and SiC systems due to the very large phonon mean-free paths. We apply and test our wire thermal-transport results to recent measurements on Si nanowires. We further investigate and predict size effects in typical multilayered SiC nanostructures, for example, a doped-SiC/SiC/SiO$_2$ layered structure that could define the transport channel in a nanosize transistor. Here the phonon-interface scattering produces a heterostructure thermal conductivity smaller than what is predicted in a traditional heat-transport calculation, suggesting a breakdown of the traditional Fourier analysis even at room temperatures. Finally, we show that the effective thermal transport in a SiC/SiO$_2$ heterostructure is sensitive to the oxide depth and could thus be used as an in-situ probe of the SiC oxidation progress.
SiC is a robust semiconductor material considered ideal for high-power application due to its material stability and large bulk thermal conductivity defined by the very fast phonons. In this paper, however, we show that both material-interface scatte ring and total-internal reflection significantly limit the SiC-nanostructure phonon transport and hence the heat dissipation in a typical device. For simplicity we focus on planar SiC nanostructures and calculate the thermal transport both parallel to the layers in a substrate/SiC/oxide heterostructure and across a SiC/metal gate or contact. We find that the phonon-interface scattering produces a heterostructure thermal conductivity significantly smaller than what is predicted in a traditional heat-transport calculation. We also document that the high-temperature heat flow across the metal/SiC interface is limited by total-internal reflection effects and maximizes with a small difference in the metal/SiC sound velocities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا