ترغب بنشر مسار تعليمي؟ اضغط هنا

فلترة حسب
11 - Mikkel {O}bro 2007
We present an algorithm that produces the classification list of smooth Fano d-polytopes for any given d. The input of the algorithm is a single number, namely the positive integer d. The algorithm has been used to classify smooth Fano d-polytopes fo r d<=7. There are 7622 isomorphism classes of smooth Fano 6-polytopes and 72256 isomorphism classes of smooth Fano 7-polytopes.
36 - Y. H. Pong , C. K. Law 2007
We study the two-particle wave function of paired atoms in a Fermi gas with tunable interaction strengths controlled by Feshbach resonance. The Cooper pair wave function is examined for its bosonic characters, which is quantified by the correction of Bose enhancement factor associated with the creation and annihilation composite particle operators. An example is given for a three-dimensional uniform gas. Two definitions of Cooper pair wave function are examined. One of which is chosen to reflect the off-diagonal long range order (ODLRO). Another one corresponds to a pair projection of a BCS state. On the side with negative scattering length, we found that paired atoms described by ODLRO are more bosonic than the pair projected definition. It is also found that at $(k_F a)^{-1} ge 1$, both definitions give similar results, where more than 90% of the atoms occupy the corresponding molecular condensates.
48 - Dohoon Choi 2007
Recently, Bruinier and Ono classified cusp forms $f(z) := sum_{n=0}^{infty} a_f(n)q ^n in S_{lambda+1/2}(Gamma_0(N),chi)cap mathbb{Z}[[q]]$ that does not satisfy a certain distribution property for modulo odd primes $p$. In this paper, using Rankin-C ohen Bracket, we extend this result to modular forms of half integral weight for primes $p geq 5$. As applications of our main theorem we derive distribution properties, for modulo primes $pgeq5$, of traces of singular moduli and Hurwitz class number. We also study an analogue of Newmans conjecture for overpartitions.
Possible (algebraic) commutation relations in the Lagrangian quantum theory of free (scalar, spinor and vector) fields are considered from mathematical view-point. As sources of these relations are employed the Heisenberg equations/relations for the dynamical variables and a specific condition for uniqueness of the operators of the dynamical variables (with respect to some class of Lagrangians). The paracommutation relations or some their generalizations are pointed as the most general ones that entail the validity of all Heisenberg equations. The simultaneous fulfillment of the Heisenberg equations and the uniqueness requirement turn to be impossible. This problem is solved via a redefinition of the dynamical variables, similar to the normal ordering procedure and containing it as a special case. That implies corresponding changes in the admissible commutation relations. The introduction of the concept of the vacuum makes narrow the class of the possible commutation relations; in particular, the mentioned redefinition of the dynamical variables is reduced to normal ordering. As a last restriction on that class is imposed the requirement for existing of an effective procedure for calculating vacuum mean values. The standard bilinear commutation relations are pointed as the only known ones that satisfy all of the mentioned conditions and do not contradict to the existing data.
We study a recently proposed formulation of overlap fermions at finite density. In particular we compute the energy density as a function of the chemical potential and the temperature. It is shown that overlap fermions with chemical potential reproduce the correct continuum behavior.
19 - Ashot Minasyan 2007
We combine classical methods of combinatorial group theory with the theory of small cancellations over relatively hyperbolic groups to construct finitely generated torsion-free groups that have only finitely many classes of conjugate elements. Moreov er, we present several results concerning embeddings into such groups. As another application of these techniques, we prove that every countable group $C$ can be realized as a group of outer automorphisms of a group $N$, where $N$ is a finitely generated group having Kazhdans property (T) and containing exactly two conjugacy classes.
80 - John W. Robertson 2017
The goal of this paper is to construct invariant dynamical objects for a (not necessarily invertible) smooth self map of a compact manifold. We prove a result that takes advantage of differences in rates of expansion in the terms of a sheaf cohomolog ical long exact sequence to create unique lifts of finite dimensional invariant subspaces of one term of the sequence to invariant subspaces of the preceding term. This allows us to take invariant cohomological classes and under the right circumstances construct unique currents of a given type, including unique measures of a given type, that represent those classes and are invariant under pullback. A dynamically interesting self map may have a plethora of invariant measures, so the uniquess of the constructed currents is important. It means that if local growth is not too big compared to the growth rate of the cohomological class then the expanding cohomological class gives sufficient marching orders to the system to prohibit the formation of any other such invariant current of the same type (say from some local dynamical subsystem). Because we use subsheaves of the sheaf of currents we give conditions under which a subsheaf will have the same cohomology as the sheaf containing it. Using a smoothing argument this allows us to show that the sheaf cohomology of the currents under consideration can be canonically identified with the deRham cohomology groups. Our main theorem can be applied in both the smooth and holomorphic setting.
This paper is an exposition of the so-called injective Morita contexts (in which the connecting bimodule morphisms are injective) and Morita $alpha$contexts (in which the connecting bimodules enjoy some local projectivity in the sense of Zimmermann-H uisgen). Motivated by situations in which only one trace ideal is in action, or the compatibility between the bimodule morphisms is not needed, we introduce the notions of Morita semi-contexts and Morita data, and investigate them. Injective Morita data will be used (with the help of static and adstatic modules) to establish equivalences between some intersecting subcategories related to subcategories of modules that are localized or colocalized by trace ideals of a Morita datum. We end up with applications of Morita $alpha$-contexts to $ast$-modules and injective right wide Morita contexts.
We analyze the possibility of probing non-standard neutrino interactions (NSI, for short) through the detection of neutrinos produced in a future galactic supernova (SN).We consider the effect of NSI on the neutrino propagation through the SN envelop e within a three-neutrino framework, paying special attention to the inclusion of NSI-induced resonant

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا